7x^2+2(2x+3)=2(3x^2-4)+13x

Simple and best practice solution for 7x^2+2(2x+3)=2(3x^2-4)+13x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7x^2+2(2x+3)=2(3x^2-4)+13x equation:



7x^2+2(2x+3)=2(3x^2-4)+13x
We move all terms to the left:
7x^2+2(2x+3)-(2(3x^2-4)+13x)=0
We multiply parentheses
7x^2+4x-(2(3x^2-4)+13x)+6=0
We calculate terms in parentheses: -(2(3x^2-4)+13x), so:
2(3x^2-4)+13x
We add all the numbers together, and all the variables
13x+2(3x^2-4)
We multiply parentheses
6x^2+13x-8
Back to the equation:
-(6x^2+13x-8)
We get rid of parentheses
7x^2-6x^2+4x-13x+8+6=0
We add all the numbers together, and all the variables
x^2-9x+14=0
a = 1; b = -9; c = +14;
Δ = b2-4ac
Δ = -92-4·1·14
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{25}=5$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-5}{2*1}=\frac{4}{2} =2 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+5}{2*1}=\frac{14}{2} =7 $

See similar equations:

| 6x-4(3x+3)=5(2x-3)+5 | | 12−(1/5r)=2r+1 | | 4=Px0.03x1/12 | | 4(2x+1)=24 | | 18-3x=4(x+8) | | (X+2)/5=5-(x+3)/2 | | (X+2)/5=5-(x+3)/3 | | 8(x+1)=4x-32 | | 2x6-2x=5x-6 | | 4x-10=7(x-4) | | 7.3x+(9.2x-3)+7.3x+(9.2x-3)=324 | | -4x^2+8x^2=0 | | (2x-9)(3x-1)=0 | | 6(5x+11)=36 | | 25x-30=65x-20 | | 5x+3.45=65x-1/5 | | 0.2=x/6 | | d+100+100+80=360 | | 8-7x=8+x | | 8×+6=5x+9 | | (5x+1)/3=6x-2 | | 3x+1/2=4+2x/3 | | (5)=(3x=4)-(2-x) | | 2x2-9x= | | 4x2–25=37 | | 2x+50+3x-10=180 | | 3/2a-11=-26 | | 3x-6+2x=5x-1 | | T=0.16n+2.83 | | -2(x-3)+5x-1=26 | | (x+2)^2=7 | | 13-10x=103 |

Equations solver categories